Semigroup stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems
نویسندگان
چکیده
We develop a simple energy method for proving the stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems. In particular, we extend to several space dimensions and to variable coefficients a crucial stability result by Goldberg and Tadmor for Dirichlet boundary conditions. This allows us to give some conditions on the discretized operator that ensure that stability estimates for zero initial data imply a semigroup stability estimate for general initial data. We apply this criterion to several numerical schemes in two space dimensions.
منابع مشابه
Stability of Finite Difference Schemes for Hyperbolic Initial Boundary Value Problems: Numerical Boundary Layers
In this article, we give a unified theory for constructing boundary layer expansions for discretized transport equations with homogeneous Dirichlet boundary conditions. We exhibit a natural assumption on the discretization under which the numerical solution can be written approximately as a two-scale boundary layer expansion. In particular, this expansion yields discrete semigroup estimates tha...
متن کاملFully discrete hyperbolic initial boundary value problems with nonzero initial data
The stability theory for hyperbolic initial boundary value problems relies most of the time on the Laplace transform with respect to the time variable. For technical reasons, this usually restricts the validity of stability estimates to the case of zero initial data. In this article, we consider the class of non-glancing finite difference approximations to the hyperbolic operator. We show that ...
متن کاملStability Theory of Difference Approximations for Multidimensional Initial-Boundary Value Problems
A stability theory is developed for dissipative difference approximations to multidimensional initial-boundary value problems. The original differential problem should be strictly hyperbolic and the difference problem consistent with the differential one. An algebra of pseudo-difference operators is built and later used to prove the stability of the difference approximation with variable coeffi...
متن کاملStability of Finite Difference Schemes for Hyperbolic Initial Boundary Value Problems
The aim of these notes is to present some results on the stability of finite difference approximations of hyperbolic initial boundary value problems. We first recall some basic notions of stability for the discretized Cauchy problem in one space dimension. Special attention is paid to situations where stability of the finite difference scheme is characterized by the so-called von Neumann condit...
متن کاملThe Leray- G̊arding method for finite difference schemes
In [Ler53] and [G̊ar56], Leray and Gårding have developed a multiplier technique for deriving a priori estimates for solutions to scalar hyperbolic equations in either the whole space or the torus. In particular, the arguments in [Ler53, G̊ar56] provide with at least one local multiplier and one local energy functional that is controlled along the evolution. The existence of such a local multipli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 80 شماره
صفحات -
تاریخ انتشار 2011